
Lecture Notes to Accompany

Scientific Computing

An Introductory Survey
Second Edition

by Michael T. Heath

Chapter 12

Fast Fourier Transform

Copyright c© 2001. Reproduction permitted only for

noncommercial, educational use in conjunction with the

book.

1

Trigonometric Interpolation

In modeling periodic or cyclic phenomena, sines

and cosines are more appropriate functions than

polynomials or piecewise polynomials

Representation as linear combination of sines

and cosines decomposes continuous function

or discrete data into components of various

frequencies

Representation in frequency space enables more

efficient manipulations than in original time or

space domain

2

Complex Exponential Notation

We will use complex exponential notation:

eiθ = cos θ + i sin θ,

where i =
√
−1 (Euler’s identity)

Since

e−iθ = cos(−θ) + i sin(−θ) = cos θ − i sin θ,

cos(2πkt) =
e2πikt + e−2πikt

2
and

sin(2πkt) = i
e−2πikt − e2πikt

2

So pure cosine or sine wave of frequency k

is equivalent to sum or difference of complex

exponentials of half amplitude and frequencies

k and −k

3

Roots of Unity

For given integer n, we use notation

ωn = cos(2π/n)− i sin(2π/n) = e−2πi/n

for primitive nth root of unity

nth roots of unity, sometimes called twiddle

factors in this context, are then given by ωkn or

by ω−kn , k = 0, . . . , n− 1

...................

....................
......................

............................
...

..

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

.

•

•

•

•

1 = ω0
4

i = ω3
4 = ω−1

4

ω2
4 = ω−2

4 = −1

−i = ω1
4 = ω−3

4

2π/4

4

Discrete Fourier Transform

Given sequence x = [x0, . . . , xn−1]T , its discrete

Fourier transform, or DFT, is sequence y =

[y0, . . . , yn−1]T given by

ym =
n−1∑
k=0

xk ω
mk
n , m = 0,1, . . . , n− 1,

or, written more compactly,

y = Fnx,

with entries of Fourier matrix Fn given by

{Fn}mk = ωmkn

For example,

F4 =


1 1 1 1

1 ω1 ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 =


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i



5

Inverse DFT

Note that

1

n


1 1 1 1

1 ω−1 ω−2 ω−3

1 ω−2 ω−4 ω−6

1 ω−3 ω−6 ω−9




1 1 1 1

1 ω1 ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9



=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



In general, F−1
n = (1/n)FHn

Inverse DFT is therefore given by

xk =
1

n

n−1∑
m=0

ym ω
−mk
n , k = 0,1, . . . , n− 1

DFT gives trigonometric interpolant using only
matrix-vector multiplication, which costs only
O(n2)

6

DFT, continued

DFT of sequence, even purely real sequence,
is in general complex

Components of DFT y of real sequence x of
length n are conjugate symmetric: yk and yn−k
are complex conjugates for k = 1, . . . , (n/2)−1

Two components of special interest are:

• y0, whose value is sum of components of x,
is sometimes called DC component, corre-
sponding to zero frequency (i.e., constant
function)

• yn/2, corresponding to Nyquist frequency,
which is highest frequency representable at
given sampling rate

Components of y beyond Nyquist frequency
correspond to frequencies that are negatives
of those below Nyquist frequency

7

Example: DFT

For randomly chosen sequence x,

F8x = F8



4

0

3

6

2

9

6

5


=



35

−5.07 + 8.66i

−3 + 2i

9.07 + 2.66i

−5

9.07− 2.66i

−3− 2i

−5.07− 8.66i


= y

Transformed sequence is complex, but y0 and

y4 are real, while y5, y6, and y7 are complex

conjugates of y3, y2, and y1, respectively

There appears to be no discernible pattern to

frequencies present, and y0 is indeed equal to

sum of elements of x

8

Example: DFT

For cyclic sequence x,

F8x = F8



1

−1

1

−1

1

−1

1

−1


=



0

0

0

0

8

0

0

0


= y

Sequence has highest possible rate of oscilla-

tion (between 1 and −1) for this sampling rate

In transformed sequence, only nonzero compo-

nent is at Nyquist frequency (in this case y4)

9

Computing DFT

By taking advantage of symmetries and redun-

dancies in definition of DFT, shortcut algo-

rithm can be developed for evaluating DFT

very efficiently

For illustration, consider case n = 4

From definition of DFT,

ym =
3∑

k=0

xk ω
mk
n , m = 0, . . . ,3

Writing out four equations in full,

y0 = x0ω
0
n + x1ω

0
n + x2ω

0
n + x3ω

0
n

y1 = x0ω
0
n + x1ω

1
n + x2ω

2
n + x3ω

3
n

y2 = x0ω
0
n + x1ω

2
n + x2ω

4
n + x3ω

6
n

y3 = x0ω
0
n + x1ω

3
n + x2ω

6
n + x3ω

9
n

10

Computing DFT, continued

Noting that

ω0
n = ω4

n = 1, ω2
n = ω6

n = −1, ω9
n = ω1

n

and regrouping, we obtain four equations

y0 = (x0 + ω0
nx2) + ω0

n(x1 + ω0
nx3)

y1 = (x0 − ω0
nx2) + ω1

n(x1 − ω0
nx3)

y2 = (x0 + ω0
nx2) + ω2

n(x1 + ω0
nx3)

y3 = (x0 − ω0
nx2) + ω3

n(x1 − ω0
nx3)

DFT can now be computed with only 8 ad-

ditions/subtractions and 6 multiplications, in-

stead of expected (4 − 1) ∗ 4 = 12 additions

and 42 = 16 multiplications

Actually, even fewer multiplications are required

for this small case, since ω0
n = 1, but we have

tried to illustrate how algorithm works in gen-

eral
11

Computing DFT, continued

Main point is that computing DFT of original

4-point sequence has been reduced to com-

puting DFT of its two 2-point even and odd

subsequences

This property holds in general: DFT of n-point

sequence can be computed by breaking it into

two DFTs of half length, provided n is even

General pattern becomes clearer when viewed

in terms of first few Fourier matrices

F1 = 1, F2 =

[
1 1

1 −1

]
,

F4 =


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i


12

Computing DFT, continued

Let P4 be permutation matrix

P4 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


and D2 diagonal matrix

D2 = diag(1, ω4) =

[
1 0

0 −i

]

Then

F4P4 =


1 1 1 1
1 −1 −i i
1 1 −1 −1
1 −1 i −i

 =

[
F2 D2F2

F2 −D2F2

]
,

Thus, F4 can be rearranged so that each block

is diagonally scaled version of F2

13

Computing DFT, continued

Such hierarchical splitting can be carried out at

each level, provided number of points is even

In general, Pn is permutation that groups even-

numbered columns of Fn before odd-numbered

columns, and

Dn/2 = diag
(

1, ωn, . . . , ω
(n/2)−1
n

)

To apply Fn to sequence of length n, we need

merely apply Fn/2 to its even and odd subse-

quences and scale results, where necessary, by

±Dn/2

Resulting recursive divide-and-conquer algorithm

for computing DFT is called fast Fourier trans-

form, or FFT

14

FFT Algorithm

procedure fft(x, y, n, ω)

if n = 1 then

y[0] = x[0]

else

for k = 0 to (n/2)− 1

p[k] = x[2k]

s[k] = x[2k + 1]

end

fft(p, q, n/2, ω2)

fft(s, t, n/2, ω2)

for k = 0 to n− 1

y[k] = q[k mod (n/2)] +

ωkt[k mod (n/2)]

end

end

15

FFT Algorithm, continued

There are log2 n levels of recursion, each of

which involves O(n) arithmetic operations, so

total cost is O(n log2 n)

For clarity, separate arrays were used for sub-

sequences, but in fact transform can be com-

puted in place using no additional storage

Input sequence is assumed complex; if input

sequence is real, then additional symmetries in

DFT can be exploited to reduce storage and

operation count by half

Output sequence is not produced in natural

order, but either input or output sequence can

be rearranged at cost of O(n log2 n) (analogous

to sorting)

16

FFT Algorithm, continued

FFT algorithm can be formulated using itera-

tion rather than recursion, which is often de-

sirable for greater efficiency or when using pro-

gramming language that does not support re-

cursion

Despite its name, fast Fourier transform is an

algorithm, not a transform

It is a particular way of computing DFT of

sequence in efficient manner

17

Complexity of FFT

DFT is defined in terms of matrix-vector prod-

uct, whose straightforward evaluation would

appear to require O(n2) arithmetic operations

Use of FFT algorithm reduces work to only

O(n log2 n), which makes enormous practical

difference in time required to transform large

sequences

n n log2 n n2

64 384 4096
128 896 16384
256 2048 65536
512 4608 262144

1024 10240 1048576

18

Inverse Transform

Due to similar form of DFT and its inverse,

FFT algorithm can also be used to compute

inverse DFT efficiently

Ability to transform back and forth quickly be-

tween time and frequency domains makes it

practical to perform any computations or anal-

ysis that may be required in whichever domain

is more convenient and efficient

19

Limitations of FFT

FFT algorithm is not always applicable or max-
imally efficient

Input sequence assumed to be:

• Equally spaced

• Periodic

• Power of two in length

First two of these follow from definition of
DFT, while third is required for maximal ef-
ficiency of FFT algorithm

Care must be taken in applying FFT algo-
rithm to produce most meaningful results as
efficiently as possible

For example, transforming sequence that is not
really periodic or padding sequence to make its
length power of two may introduce spurious
noise and complicate interpretation of results

20

Mixed-Radix FFT

It is possible to define “mixed-radix” FFT al-

gorithm that does not require number of points

n to be power of two

More general algorithm is still based on divide-

and-conquer; sequence is not necessarily split

exactly in half at each level, but by smallest

prime factor of remaining sequence length

Efficiency depends on whether n is product of

small primes (ideally power of two)

If not, then much of computational advantage

of FFT may be lost

For example, if n itself is prime, then sequence

cannot be split at all, and “fast” algorithm

becomes standard O(n2) matrix-vector multi-

plication

21

Applications of DFT

DFT is often of direct interest itself and is

also useful as computational tool that provides

efficient means for computing other quantities

DFT is of direct interest in detecting period-

icities or cycles in discrete data

DFT can be used to remove unwanted period-

icities

For example, to remove high-frequency noise

from sequence, one can compute its DFT, set

high-frequency components of transformed se-

quence to zero, then compute inverse DFT of

modified sequence to get back into original do-

main

22

Applications of DFT, continued

As another example, weather data often con-

tain two distinct cycles, diurnal and annual,

and one might want to remove one to study

the other in isolation

Economic data are also often “seasonally ad-

justed,” removing unwanted periodicities to re-

veal “secular” trends

Because of such uses, DFT is of vital impor-

tance in many aspects of signal processing,

such as digital filtering

23

Applications of DFT, continued

Some computations are simpler or more effi-

cient in frequency domain than in time domain

Examples include discrete convolution of two

sequences u and v of length n,

{u ? v}m =
n−1∑
k=0

vkum−k, m = 0,1, . . . , n− 1,

and related quantities such as cross correla-

tion of two sequences or autocorrelation of a

sequence with itself

Equivalent operation in frequency domain is

simply pointwise multiplication (in some cases

with complex conjugation)

24

Applications of DFT, continued

If DFT and its inverse can be computed effi-

ciently, then it may be advantageous to trans-

form to frequency domain to compute such

convolutions, then transform back to time do-

main

For example, to compute convolution or cor-

relation of two sequences, it is often advanta-

geous to use FFT algorithm to compute DFT

of sequences, take pointwise product in fre-

quency domain, then inverse DFT back to time

domain, again via FFT algorithm

FFT algorithm also forms basis for exception-

ally efficient methods for solving certain pe-

riodic boundary value problems, such as Pois-

son’s equation on regular domain with periodic

boundary conditions

25

Fast Polynomial Multiplication

FFT algorithm also provides fast method for
some computations that might not seem re-
lated to it

For example, complexity of straightforward mul-
tiplication of two polynomials is proportional to
product of their degrees

However, polynomial of degree n−1 is uniquely
determined by its values at n distinct points

Thus, product polynomial can be determined
by interpolation from pointwise product of fac-
tor polynomials at n points

Both polynomial evaluation and interpolation
using n points would normally require O(n2)
operations, but by choosing points to be nth
roots of unity, FFT algorithm can be used to
reduce complexity to O(n log2 n)

26

Wavelets

Sine and cosine functions used in Fourier anal-

ysis are very smooth (infinitely differentiable),

and very broad (nonzero almost everywhere on

real line)

They are not very effective for representing

functions that change abruptly or have highly

localized support

Gibbs phenomenon in Fourier representation of

square wave (“ringing” at corners) is one man-

ifestation of this

In response to this shortcoming, there has been

intense interest in recent years in new type of

basis functions called wavelets

27

Wavelets, continued

Wavelet basis is generated from single function

φ(x), called mother wavelet or scaling func-

tion, by dilation and translation, φ((x − b)/a),

where a and b are real numbers with a 6= 0

There are many choices for mother wavelet

Main issue is tradeoff between smoothness and

compactness

A member of one of most commonly used fam-

ilies of wavelets, due to Daubechies, is shown

below

−0.1

0

0.1

..
.....................
.........................
...........................
...................................
...........................
..
..
................................
...

....................

.......................
.......................
..............................
...
...

..

28

Wavelets, continued

Typical choices for dilation and translation pa-

rameters are a = 2−j and b = k2j, where j and

k are integers, so that φjk(x) = φ(2jx− k)

If mother wavelet φ(x) has sufficiently localized

support, then ∫
φjkφmn = 0

whenever indices do not both match, so doubly-

indexed basis functions φjk(x) are orthogonal

By replicating mother wavelet at many dif-

ferent scales, it is possible to mimic behavior

of any function at many different scales; this

property of wavelets is called multiresolution

29

Wavelets, continued

Fourier basis functions are localized in frequency

but not in time: small changes in frequency

produce changes everywhere in time domain

Wavelets are localized in both frequency (by

dilation) and time (by translation)

This localization tends to make wavelet repre-

sentation of function very sparse

30

Discrete Wavelet Transform

As with Fourier transform, there is analogous

discrete wavelet transform, or DWT

DWT and its inverse can be computed very

efficiently by pyramidal, hierarchical algorithm

Sparsity of wavelet basis makes computation

of DWT even faster than FFT

DWT requires only O(n) work for sequence of

length n, instead of O(n logn)

Because of their efficiency, both in compu-

tation and in compactness of representation,

wavelets are playing an increasingly important

role in many areas of signal and image process-

ing, such as data compression, noise removal,

and computer vision

31

